50m Kelebek Stil Maksimum Performans Yüzmesine Yüzme Teknik Evrelerinin Etkisi / The Effect of Swimming Technical Phases on 50m Butterfly Sprint Swimming

Authors

  • Ender KALPAK Marmara Üniversitesi Sağlık Bilimleri Enstitüsü
  • Asiye Filiz ÇAMLIGÜNEY Marmara University

Keywords:

Anahtar Kelimeler: Yüzme, kelebek stil yüzme, sprint yüzme, biyomekanik analiz

Abstract

ÖZET
Amaç: 10-12 Yaş erkek yüzücülerde 50m kelebek maksimum performans yüzüşünde çıkış ve dönüş
evrelerinin toplam zamana etkisinin belirlenmesidir.
Materyal ve Metod: Çalışma grubunu ENKA Spor Kulübü altyapı takımında lisanslı 10-12 yaş aralığında 23
erkek yüzücü (yaş: 11,13±0,81 yıl, boy: 160,89±10,01 cm, vücut ağırlığı: 48,17±8,87 kg, VKİ: 18,49±1,97
kg/m2) oluşturmuştur. Yüzücülerin boy, vücut ağırlığı ve kulaç uzunluğu ölçümlerinden sonra, aynı gün 50m
kelebek yüzme tekniğindeki sprint çıkış-dönüş performans ölçümleri için kinematik analiz yapılmıştır
(Dartfish 9 Team pro). Analizler sırasında video kayıtları GoPro HERO7-Black ile alınmıştır. Analizler
sırasında yüzülen toplam süre, mesafenin birinci ve ikinci yarısının süreleri ölçülmüştür. Veriler
değerlendirilirken tanımlayıcı istatistiksel metotlar (minimum, maksimum, ortalama, standart sapma)
kullanılmıştır. Çıkış ve dönüş evrelerinin toplam zamana etkisinin belirlenmesinde Pearson kolerasyon testi ve
lineer regresyon analizi uygulanmıştır.
Bulgular: İlk 25m ve son 25m ile yüzme zamanı 50m toplam yüzme zamanı için hesaplanan regresyon modeli
(F(1,22)= 329,560, p=0,000**), (F(1,22)=519,754, p=0,000**) istatistiksel olarak anlamlı bulunmuştur. İlk 25m
yüzme zamanı, 50m toplam yüzme zamanın %94’ünü, son 25m yüzme zamanı, 50m toplam yüzme zamanın
%96’sını (R=0,980; R2=0,961) açıklamaktadır.
Sonuç: İlk ve son 25m yüzme zamanı 50m toplam yüzme zamanını etkilemektedir.
Anahtar Kelimeler: Biyomekanik Analiz, Kelebek Stil Yüzme, Sprint Yüzme, Yüzme.
ABSTRACT
Aim: The aim of this study is to investigate the associations between the individual performance of physical
education and sports teachers and their perception of digital transformation. The aim of this study is to
investigate the effect of the start and turn on the total time in the 50m butterfly sprint swim in 10-12 year old
male swimmers.
Material and Method: The study group consisted of 23 male swimmers (age:11.13±0.81 years,
height:160.89±10.01 cm, body weight:48.17±8.87 kg, BMI:18.49±1.97 kg/m2) licensed in the ENKA Sports
Club youth team, aged 10-12. After the swimmers' height, body weight and stroke length measurements,
kinematic analysis was performed for the start-turn performance measurements in the 50m butterfly swimming
technique on the same day (Dartfish 9 Team pro, USA). During the analyses, video recordings were made with
GoPro HERO7-Black. During the analyses, the total time swim, the times of the first 25m and second 25m of
the distance were measured. Descriptive statistical methods (minimum, maximum, mean, standard deviation)
were used to evaluate the data. Linear regression analysis and Pearson correlation test were used to determine
the effect of the start and turn phases on the total time.
Results: The regression model calculated for the first 25m and last 25m swimming time and the total
swimming time of 50m (F(1,22)= 329.560, p=0.000**), (F(1,22)=519.754, p=0.000**) was found to be
statistically significant. The first 25m swimming time explains 94% of the total 50m swimming time, the last
25m swimming time explains 96% of the total 50m swimming time (R=0.980; R2=0.961).
Conclusions: The first and last 25m swimming time affects the total 50m swimming time.
Keywords: Biomechanical Analysis, Butterfly, Sprint Swim, Swimming.

References

Atkinson RR., Dickey JP., Dragunas A., Nolte V. (2014). Importance of saggittal kick symmetry for underwater

dolphin kick performance. Human Movement Science. 33,298-311.

Barbosa TM., Bragada JA., Reis VM., Marinho DA., Carvalho C., Silva AJ. (2010). Energetics and biomechanics

as determining factors of swimming performance: updating the state of the art. Journal of Science and

Medicine in Sport.13(2), 262-269.

Connaboy, C., Coleman, S. and Sanders, R.H. (2009) Hydrodynamics of undulatory underwater swimming: a

review. Sports Biomechanics 8, 360-380.

De Jesus, K., de Jesus, K., Figueiredo, P.A., Goncalves, P., Vilas-Boas, J.P. and Fernandes, R.J. (2012) Effects of

fatigue on kinematical parameters during submaximal and maximal 100-m butterfly bouts. Journal of

Applied Biomechanics 28, 599-607.

Fina

swimming

rules.

https://resources.fina.org/fina/document/2023/01/04/65961a45-bde5-4217-b666

ca1f5dc2d1f0/1_Swimming-Technical-Rules.04.01.2023.pdf. [Erişim tarihi: 05.07.2023].

Garland Fritzdorf, S., Hibbs, A. and Kleshnev, V. (2009) Analysis of speed, stroke rate, and stroke distance for

world-class breaststroke swimming. Journal of Sports Sciences 27, 373- 378.

Gonjo, T., & Olstad, B. H. (2020). Start and turn performances of competitive swimmers in sprint butterfly

swimming. Journal of sports science & medicine, 19(4), 727

Houel, N., Elipot, M., Andre, F. and Hellard, P. (2013) Influence of angles of attack, frequency and kick amplitude

on swimmer's horizontal velocity during underwater phase of a grab start. Journal of Applied Biomechanics

, 49-54.

Morais, J.E., Marinho, D.A., Arellano, R. and Barbosa, T.M. (2019) Start and turn performances of elite sprinters

at the 2016 European Championships in swimming. Sports Biomechanics 18, 100- 114.

Morouço P., Keskinen KL., Vilas-Boas JP., Fernandes RJ. (2011). Relationship between tethered forces and the

four swimming techniques performance. Journal of Applied Biomechanics. 27(2), 161-169.

Naemi, R. and Sanders, R.H. (2008) A "hydrokinematic" method of measuring the glide efficiency of a human

swimmer. Journal of Biomechanical Engineering, December 2008, Volume (130), 061016.

Norris, B. S., & Olson, S. L. (2011). Concurrent validity and reliability of two-dimensional video analysis of hip

and knee joint motion during mechanical lifting. Physiotherapy theory and practice, 27(7), 521-530.

Schaffert N., Engel A., Schlüter S., Mattes K., (2019). The Sound of the water dolphin-kick: Developing real-time

audio feedback in swimming. Displays. 59, 53-62.

Seifert, L., Toussaint, H. M., Alberty, M., Schnitzler, C., & Chollet, D. (2010). Arm coordination, power, and

swim efficiency in national and regional front crawl swimmers. Human movement science, 29(3), 426

Smith, D.J., Norris, S.R. and Hogg, J.M. (2002) Performance evaluation of swimmers: scientific tools. Sports

Medicine 32, 539-554.

Strzała, M., Stanula, A., Krężałek, P., Ostrowski, A., Kaca, M., & Głąb, G. (2017). Butterfly sprint swimming

technique, analysis of somatic and spatial-temporal coordination variables. Journal of Human Kinetics, 60,

Takeda, T., Sakai, S., & Takagi, H. (2022). Underwater flutter kicking causes deceleration in start and turn

segments of front crawl. Sports Biomechanics, 21(10), 1224-1233.

Tor, E., Pease, D.L. and Ball, K.A. (2015) Comparing three underwater trajectories of the swimming start. Journal

of Science and Medicine in Sport, 18, 725-729.

Toussaint, H.M., Carol, A., Kranenborg, H. and Truijens, M.J. (2006) Effect of fatigue on stroking characteristics

in an arms-only 100-m front-crawl race. Medicine & Science in Sports & Exercise 38, 1635-1642.

Veiga, S., Cala, A., Mallo, J. and Navarro, E. (2013) A new procedure for race analysis in swimming based on

individual distance measurements. Journal of Sports Sciences 31, 159-165.

Downloads

Published

2024-12-27

How to Cite

KALPAK, E., & ÇAMLIGÜNEY, A. F. (2024). 50m Kelebek Stil Maksimum Performans Yüzmesine Yüzme Teknik Evrelerinin Etkisi / The Effect of Swimming Technical Phases on 50m Butterfly Sprint Swimming. Anatolia Sport Research, 5(3), 1–9. Retrieved from https://anatoliasr.org/index.php/asr/article/view/117

Issue

Section

Reserch Articles

Similar Articles

<< < 1 2 3 4 5 

You may also start an advanced similarity search for this article.