DETERMINATION OF FUEL UTILISATION DURING SUBTHRESHOLD EXERCISE INDUCED METABOLIC SYSTEM ACTIVITY IN HEALTHY SUBJECTS

Main Article Content

Hüsamettin KAYA
Çağrı ÖZDENK

Abstract

ÖZET


 Amaç: Düşük yoğunluklu egzersiz sırasında substrat oksidasyonundaki metabolik değişimleri değerlendirmeyi ve sağlıklı erkek deneklerde yağ ve karbonhidrat yakımlarının enerji üretimine katkısını analiz etmeyi amaçladık.


Materyal ve Metod: Bu çalışmaya toplam 12 sağlıklı erkek katıldı. Her denek başlangıçta maksimum egzersiz testi gerçekleştirdi. Daha sonra her denek 30 dakikalık bir süre boyunca maksimum egzersiz kapasitesinin %40-45'inde sabit bir yük egzersizi yaptı. Egzersiz sırasında deneklerin yağ ve karbonhidrat oksidasyonu, solunum gazı değişim formülü için standart stokiyometrik denklemler kullanılarak hesaplandı.


Bulgular: Solunum katsayısı (RQ) test sonunda 0.93±0.001'den 0.92±0.001'e önemli ölçüde azaldı. Test sonunda yağ oksidasyonunda 1.512±0.04 gr'dan 1.958±0.03 gr'a anlamlı bir artış (%29) vardı (p<0.05), ancak karbonhidrat oksidasyonunda 6.935±0.06 gr'dan 6.608±0.04 gr'a (p<0.05) önemli bir düşüş (-%4.7).


Sonuç: Artan yağ oksidasyonu, obezite hastalarında düşük ve orta şiddette egzersiz yoğunluğunun önemli bir yol olarak kullanılabileceğini gösterebilir.


Anahtar Kelimeler: Egzersiz, Yağ Oksidasyonu, Anaerobik Eşik, Karbonhidrat Oksidasyonu


 


ABSTRACT


 Aim: We intended to evaluate metabolic shifts in substrate oxidation during low intensity exercise and analyse the contribution of fat and carbohydrate oxidations to energy production in healthy male subjects.  


 Material and Method: Total of 12 healthy male participated to this study. Each subjects initially performed maximal exercise test. Then each subjects performed a constant load exercise at their 40-45% of maximal exercise capacity for a period of 30 min. During exercise, the subjects’ fat and carbohydrate oxidation was calculated using standard stoichiometric equations for respiratory gas exchange formula.


Results: Respiratory Quotient (RQ) decreased significantly in from 0.93±0.001 to 0.92±0.001 at the end of test. There was a significant increase (29%) in fat oxidation from 1.512±0.04 gr to 1.958±0.03 gr at the end of the test (p<0.05) but significant decrease in carbohydrate oxidation (-4.7%) from 6.935±0.06 gr to 6.608±0.04 gr at the end of the test (p<0.05).


Conclussion: In conclusion, increasing amount of fat oxidation may indicate that the low to moderate exercise intensity can be used as an important way in patients with obesity.


Keywords:  Exercise, Fat Oxidation, Anaerobic Threshold, Carbohydrate Oxidation

Article Details

How to Cite
KAYA, H. ., & ÖZDENK, Çağrı. (2022). DETERMINATION OF FUEL UTILISATION DURING SUBTHRESHOLD EXERCISE INDUCED METABOLIC SYSTEM ACTIVITY IN HEALTHY SUBJECTS . Anatolia Sport Research, 3(2), 17-22. Retrieved from https://anatoliasr.org/index.php/asr/article/view/50
Section
Reserch Articles

References

Beaver, W.L., Wasserman, K., Whipp, B.J. (1986). A new method for detecting the anaerobic threshold by gas exchange. Journal of Applied Physiology, 60: 2020-2027.

Brun, J., F., Myzia, J., Varlet-Marie, E., Raynaud de Mauverger, E., Mercier, J. (2022). Beyond the calorie paradigm: Taking into account in practice the balance of fat and carbohydrate oxidation during exercise? Nutrients, 14(8):1605.

Calonne, J., Fares, E.J., Montani, J.P., Schutz, Y., Dulloo, A., Isacco, L. (2021). Dynamics of fat oxidation from sitting at rest to light exercise in inactive young humans. Metabolites, 11(6):334.

Corpeleijn, E., Saris, W. H., Blaak, E. E. (2009). Metabolic flexibility in the development of insulin resistance and type 2 diabetes: effects of lifestyle. Obesity Reviews, 10(2):178-193.

Çolak, R., Özçelik, O. (2002). Effects of progressively increasing work rate exercise on body substrate utilisation. Turkish Journal of Endocrinology and Metabolism, 2: 81-84.

Frayn, K.N. (1983). Calculation of substrate oxidation rates in vivo from gaseous exchange. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 55(2):628-634.

Fuller, S.E., Huang, T.Y., Simon, J., Batdorf, H.M., Essajee, N.M., Scott, M.C., Waskom, C.M., Brown, J.M., Burke, S.J., Collier, J.J., Noland, R.C. (2019). Low-intensity exercise induces acute shifts in liver and skeletal muscle substrate metabolism but not chronic adaptations in tissue oxidative capacity. Journal of Applied Physiology (1985),127(1):143-156.

Hargreaves, M., Spriet, L.L. (2018). Exercise metabolism: Fuels for the fire. Cold Spring Harbor Perspectives in Medicine, 8(8):a029744.

Lazzer, S., Lafortuna, C., Busti, C., Galli, R., Agosti, F., Sartorio, A. (2011). Effects of low- and high-intensity exercise training on body composition and substrate metabolism in obese adolescents. Journal of Endocrinological Investigation, 34(1):45-52.

O'Donoghue, G., Blake, C., Cunningham, C., Lennon, O., Perrotta, C. (2021). What exercise prescription is optimal to improve body composition and cardiorespiratory fitness in adults living with obesity? A network meta-analysis. Obesity Reviews, 22(2):e13137.

Ozcelik, O., Aslan, M., Ayar, A., Kelestimur, H. (2004). Effects of body mass index on maximal work production capacity and aerobic fitness during incremental exercise. Physiological Research, 53(2):165-170.

Ozcelik O, Dogan H, Kelestimur H. (2003). Effects of acute hypoxia on body substrate utilisation during progressively increasing work rate exercise tests. Turkish Journal of Medical Science, 33: 223–228.

Ozcelik, O., Dogan, H., Kelestimur, H. (2006). Effects of eight weeks of exercise training and orlistat therapy on body composition and maximal exercise capacity in obese females. Public Health, 20(1):76-82.

Ozcelik, O., Kelestimur, H. (2004). Effects of acute hypoxia on the estimation of lactate threshold from ventilatory gas exchange indices during an incremental exercise test. Physiological Research, 53(6):653-659.

Ozcelik, O., Ozkan, Y., Algul, S., Colak, R. (2015). Beneficial effects of training at the anaerobic threshold in addition to pharmacotherapy on weight loss, body composition, and exercise performance in women with obesity. Patient Preference and Adherence, 9:999-1004.

Ozcelik, O., Ward, S.A., Whipp, B.J. (1999). Effect of altered body CO2 stores on pulmonary gas exchange dynamics during incremental exercise in humans. Experimental Physiology, 84(5):999-1011.

Özdenk, Ç., Uğur, F.A. (2021). Effects of exercise at the anaerobic threshold on respiratory quotient in young male subjects. Kastamonu Medical Journal, 1(1):9–12.

Özdenk, S., Kurudirek, İ. (2021). Effects of moderate exercise intensity on serum nesfatin-1 levels in young females. Kastamonu Medical Journal, 1(3), 67–70.

Ugras, S., Algul, S., Ozcelik, O. (2020). Assessing effectiveness of anaerobic threshold and respiratory compensation point on fat and carbohydrate oxidations during exercise in sedentary males: Anaerobic threshold and substrate oxidation. Progress in Nutrition, 22(4):e2020078.

Uğraş, S. Dalkılıç M (2021). Effects of aerobic exercise induced oxidative stress on energy regulatory hormones of irisin and nesfatin-1 in healthy females. Kastamonu Medical Journal, 1(1), 5–8.

Ugras, S. (2020). Evaluating of altered hydration status on effectiveness of body composition analysis using bioelectric impedance analysis. Libyan Journal of Medicine,15(1):1741904.

Uğraş, S., Özçelik, O. (2019). Eşik altı yoğunluğundaki egzersizin genç erkeklerde vücut yağ ve karbonhidrat yakım miktari ve oranı üzerine olan etkileri. Genel Tıp Dergisi, 29: 48-54.

Ugraş, S., Ozcelik, O. (2021). The efficacy of metabolic equivalent for determination of exercise intensity during an incremental exercise test in male subjects. Fresenius Environmental Bulletin, 30(11): 11687-11693.

van Aggel-Leijssen, D.P., Saris, W.H., Wagenmakers, A.J., Hul, G.B., van Baak, M.A. (2001). The effect of low-intensity exercise training on fat metabolism of obese women. Obesity Research, 9(2):86-96.

Zak-Golab, A., Zahorska-Markiewicz, B., Langfort, J., Kocelak, P., Holecki, M., Mizia-Stec, K., Olszanecka-Glinianowicz, M., Chudek, J. (2010). The influence of weight loss on anaerobic threshold in obese women. Journal of Sports Science and Medicine, 9(4):564-571.

Whipp, B.J., Davis, J,A,, Torres, F., Wasserman, K. (1981). A test to determine parameters of aerobic function during exercise. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 50(1):217-221

Whipp, B.J. (1994). The bioenergetic and gas-exchange of basis of exercise testing. Clinical Chest Medicine, 15: 173-192.